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Review
Object vision in human and nonhuman primates is often
cited as a primary example of adult plasticity in neural
information processing. It has been hypothesized that
visual experience leads to single neurons in the monkey
brain with strong selectivity for complex objects, and to
regions in the human brain with a preference for particu-
lar categories of highly familiar objects. This view
suggests that adult visual experience causes dramatic
local changes in the response properties of high-level
visual cortex. Here, we review the current neurophysio-
logical and neuroimaging evidence and find that the
available data support a different conclusion: adult
visual experience introduces moderate, relatively dis-
tributed effects that modulate a pre-existing, rich and
flexible set of neural object representations.

The pervasive role of experience in visual processing
Sensory information processing in adult mammalian
brains is highly malleable [1] with neural processing at
all levels adapting to both the short- and long-term proper-
ties of the incoming information. In vision, prominent
examples include short-term adaptation to input statistics
in the retina [2], primary visual cortex (V1) [3] and sub-
sequent cortical stages [4], and long-term reorganization
due to changed visual input [5].

Nevertheless, cortical neural plasticity has often been
viewed as more likely in visual regions selective for com-
plex objects than in the input stage of processing, V1 [6]. It
is unlikely that cortical representations could be con-
structed, a priori, to represent all possible objects that
might be encountered throughout life. Indeed, human
beings can recognize an almost infinite number of objects,
most of us sharing the ability to individuate thousands of
faces despite their similarity (two eyes, nose, and mouth in
a standard configuration). Further, we often develop exper-
tise in the recognition of particular types of objects such as
cars, birds or wild mushrooms [7].

In apparent support of extensive learning processes, the
past two decades have seen numerous electrophysiological
and brain imaging studies reporting effects of learning on
high-level visual representations. By learningwemean the
effects of any form of experience, whether through passive
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exposure or some sort of explicit training, such as learning
to categorize [8] or discriminate [9] between objects. Most
of these studies have focused on the lateral occipital,
occipitotemporal and inferior temporal cortices in humans
and the inferior temporal cortex in monkeys, which we
collectively refer to as ‘‘IT cortex’’. However, some studies
have argued for a role of the whole cortical visual proces-
sing hierarchy in learning about objects and their features
[10–12]. In this review, we critically evaluate the evidence
and hypotheses about visual object learning in IT cortex in
the context of the functional properties of these brain
regions. We focus on long- rather than short-term learning
effects (Box 1), in adults rather than during development
(Box 2). We will conclude that, despite the common sugges-
tion that object learning is supported by strong and often
focal changes in neural representations [13,14], such as the
possibility that a subpopulation of units tuned to complex
images is created by and emerges due to a learning process
[15,16], the empirical evidence suggests that these changes
are moderate and distributed.

Visual object coding in IT cortex
Individual neurons and subregions in IT cortex are se-
lective for complex or moderately complex stimuli,
responding more strongly to some particular images or
categories of images than to others [17–19]. The observed
properties suggest that IT cortex contains explicit repres-
entations of stimulus dimensions such as shape, at least
some visual categories and possibly even semantic
categories, with a relative tolerance for changes in other
stimulus characteristics such as position, size, lighting,
and, to a lesser degree, clutter and viewpoint (see Figure 1).
These representations are surprisingly versatile, with easy
‘read-out’ of object category and identity [20], while sim-
ultaneously containing information about other stimulus
characteristics, for example, position [21,22].

Many studies of IT cortex have employed images of
complex, real-life objects. With these images, it has proven
difficult to determine the underlying dimensions that best
describe the neural tuning functions (Figure 1). Other
experiments have included parametric variations of shapes
and have reported systematic tuning functions for a variety
of shape dimensions [23–26], analogous to the tuning in
V1 for more simple stimulus dimensions (e.g. grating
orientation). However, such tuning is demonstrated in
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Box 1. Short-term and long-term learning

There are very good reasons to differentiate learning effects

according to the time scale over which those effects are seen. The

molecular mechanisms are very different for modifications over

seconds and minutes compared to those over hours and days. For

example, long-term changes have to involve protein synthesis and

gene transcription. The distinction between short- and long-term

has been made in the literature on perceptual learning of basic

visual properties such as orientation selectivity, and there are a few

prototypical examples. Typical short-term effects are visual after-

effects in which the continuous presentation of one adapting

stimulus (e.g., a leftward oriented line) changes the perception of

another stimulus (e.g., a vertical line [81]) presented immediately

after the adapting stimulus. Typical long-term effects are the

decrease in orientation or texture discrimination thresholds that

are induced gradually during several weeks of training [82,83]. At

least some studies have suggested a role of sleep in these long-term

paradigms [84,85], pointing to a qualitative difference between

short-term and long-term learning in the underlying mechanisms.

The literature of visual object learning also contains studies of short-

term adaptation and multiple-day learning. Nevertheless, the

distinction is less clear. Object adaptation and priming studies often

include intervening stimuli, and such effects tend to integrate over

many tens of stimulus presentations [86–88]. Is it appropriate to

refer to this as a short-term effect? On the other hand, object

learning studies in humans tend to include a relatively short training

period of on average a few hours (ranging from less than one hour

to at most ten one-hour sessions) (e.g. [9,89–93]), and the role of

sleep in these paradigms has not been investigated. Is this a long-

term effect? Whereas we can make an operational distinction

between within-session and between-session learning, for now it

is premature to attach too much weight to this distinction. Never-

theless, we will restrict our discussion to studies traditionally

believed to focus on long-term learning effects, and refer to other

reviews for a discussion of more short-term, within-session

adaptation effects [94].

Figure 1. Selectivity for visual objects in IT cortex. (a) Responses of a single IT

neuron to four complex images. The raster plots under each image show the

occurrence of action potentials over time (each line corresponds to a single trial).

The horizontal line below the panel represents the time interval over which the

stimulus was presented (duration: 100 ms). With only the responses to these four

images, it would be tempting to describe the variation in response strength in

terms of overall shape orientation. However, the responses to a broader set of ten

images (see panel b) reveal no obvious relationship between this or any other

property of the images and the neural response. (b) Color plot showing the

magnitude of response elicited from the same neuron by a larger set of ten images

presented at various sizes and retinal positions. The responses of this neuron, and

of many neurons in IT cortex, are not absolutely invariant under the different
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relatively restricted stimulus sets, and we are far from
understanding the representational space of more complex
images. In this review we will describe the stimulus selec-
tivity of IT neurons and its modulation by learning in terms
of tuning curves for dimensions and features, but this
Box 2. Developmental changes in object representations

Object representations in the adult brain are the result of a long

developmental history that affects all levels of the visual processing

hierarchy. Even in V1, many of the properties of neurons and maps,

such as orientation selectivity, directional selectivity, and ocular

dominance, depend on visual experience early in life (first few

months after birth) [95,96]. After this time period, some complex

response properties are already apparent in monkey IT cortex [97],

but the physiological data in animals are not systematic enough to

make quantitative comparisons of object representations as a

function of age [98]. Evidence from several non-invasive studies

suggests that face processing is the consequence of an interplay

between face-specific innate mechanisms and visual experience

[99]. Further, behavioral studies in human and monkey infants have

revealed experience-dependent face-specific biasing mechanisms

that are further tuned by visual experience [100,101]. Early visual

experience has a special importance for face processing given that

visual deprivation in the first few months of life disrupts the

development of the holistic processing that is characteristic for face

perception in normal adults [102]. Nevertheless, neural markers of

category-specific object processing in the human brain change up to

adolescence [103]. In sum, although plasticity during development

is probably much higher than during adulthood, the currently

available data suggest for both periods that visual experience

introduces incremental effects that modulate a pre-existing set of

neural object representations.

image transformations, but the rank order of the images as a function of response

strength is remarkably similar across different transformations. This phenomenon

has been referred to as relative invariance or tolerance [17]. Data in panels a,b were

provided by Chou Hung from the dataset described in [20]. (c–e) Examples of

images that have been used to study visual object learning. Other images are

shown in Figures 3 and 4. (c) Morphed cars. A parametric stimulus space was

created by morphing between two car exemplars (A and B) [58]. (d) Greebles. Like

faces, all individual Greebles have the same number of parts in the same

configuration [40]. (e) Complex polygonal objects. All objects were matched for

low-level perceptual features but differed in the configuration of parts [74].
selectivity could also be characterized in terms of more
abstract principles, such as the statistical structure of
images [27,28].

Effects of learning on object representations:
Theoretical considerations
Learning and the single neuron

At the single-neuron level, we differentiate two tuning
properties that might be modified by learning: the optimal
stimulus, and the tuning function around that optimum.
For example, consider a neuron that shows moderate
tuning for two separate stimulus dimensions (Figure 2a–

b). Learning might increase or decrease the selectivity
across one or both dimensions, it might change the optimal
23



Figure 2. Possible effects of learning on tuning of individual neurons. (a) Illustrative stimulus space comprising two complex stimulus dimensions. (b) Prior to learning an

individual neuron may show some degree of tuning for both dimensions with strong responses for some stimuli along each dimension and weaker responses for others. (c)

Learning may alter the width of tuning along a given dimension. For example, learning to make fine-grained discriminations within Dimension 1 (relevant dimension) might

lead to a sharpening of tuning (increased selectivity) along that dimension, and a broadening of tuning (decreased selectivity) for Dimension 2 (irrelevant dimension). (d)

Learning may also change the optimal stimulus for a given neuron. For example, experience with stimuli from only the lower right part of the stimulus space might lead any

neurons with pre-learning selectivity for other parts of the stimulus space (as shown here) to shift their optimal stimulus to the relevant part of the space. (e) Learning may

also lead to the development of new tuning dimensions. For example, the relevant features for learning may not be encapsulated in any single dimension, but may require a

conjunction across dimensions. In this case the optimal stimulus for any given value along one dimension may depend on the value of the other dimension, effectively

creating a new dimension. (f–h) Illustration of how sharpening of tuning width might be achieved for a given trained dimension: (f) Reducing the response to less preferred

stimuli while maintaining the response to the optimal stimulus; (g) Increasing the response to the most preferred stimuli while maintaining the (small) response to less

preferred stimuli; or (h) Increasing the response to the optimal stimulus, but reducing the response to less preferred stimuli. Importantly, this latter mechanism could

maintain the average response strength to all stimuli within the trained dimension.
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stimulus, and/or it might change the dimensions that are
encoded by the neuron (Figure 2c–e). Importantly, these
changes in selectivity will interact with changes in
response strength (Figure 2f–h). For example, a sharpen-
ing of tuning could be achieved either by reducing
responses to non-preferred stimuli, by increasing
responses to preferred stimuli, or a combination of both.

What factors are likely to be important in driving these
sorts of changes? Whereas theories of coding in V1 propose
an optimal representation of visual images given the local
spatiotemporal statistical properties of natural images
[29], theories of object coding typically propose that these
representations reflect more global statistical properties:
the dependencies betweenmore distant image patches [30]
and at a longer time scale [31]. Many of these spatial
dependencies might be picked up by bottom-up Hebbian
learning mechanisms sensitive for conjunctions of features
[32], possibly augmented by mechanisms sensitive to prob-
ability statistics [33]. The temporal dependencies might
require a similar learningmechanismwith amemory trace
[34]. In addition to these bottom-up mechanisms, the
24
properties of object representations must also be sensitive
to top-down information about which distinctions between
images are most relevant or informative. Recent compu-
tational modeling emphasizes that tuning for moderately
complex features would be the optimal compromise be-
tween the bottom-up statistics and the top-down require-
ments imposed on object representations [35].

Learning and the population

At the population level there are two important aspects to
consider: sparseness and clustering [36]. Sparseness refers
to the distribution of learning changes across the popu-
lation of IT neurons. At one extreme, learning could modify
the response properties of only a small number of neurons.
At the other extreme, learning could modify the properties
of all neurons. Clustering, on the other hand, refers to the
spatial organization of learning-related changes. Learning
could increase clustering of neurons with similar selectiv-
ity, perhaps optimizing interactions between neurons.

If learning effects are sparse, then which factors deter-
mine the neurons that will be modified most by learning?
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At least three factors have been proposed. First, learning
might specifically involve a small subset of neurons that
prior to learning showed limited responsiveness [13]. After
training these initially unresponsive neurons would be
tuned to complex novel objects such as ‘paperclips’
[13,37,38], requiring both sharpening of tuning
(Figure 2c) and a shift in the optimal stimulus
(Figure 2d). Second, learning might specifically involve
face-selective neurons and regions [39,40]. This prediction
is rooted in the hypothesis that expertise is themajor cause
for the selectivity of face-selective regions. Before training,
these brain regions would be characterized by strong face
selectivity, but not necessarily by a response to the to-be-
trained objects. Third, studies of orientation discrimi-
nation learning in retinotopic areas have suggested that
learning might modify the tuning of the neurons that are
most informative for solving the discrimination task [41],
and a similar mechanism could be at work during object
learning.

To understand visual object learning, it is critical to
consider the degree of sparseness and clustering and the
factors that determine which neurons are most affected.
With the limited sampling afforded by single unit record-
ing, it would be very easy to miss sparse learning-related
changes, even if the few modified neurons show very large
changes in tuning properties. Similarly, given the spatial
resolution of functional imaging methods, it might only be
possible to detect distributed learning-related changes and
even then, only when there is significant clustering of those
changes.

Linking theory to empirical data

We will show below that the current empirical evidence is
consistent with general predictions from the compu-
tational proposals: learning changes neural tuning and
responsiveness according to both bottom-up stimulus
characteristics and top-down task constraints. However,
almost no studies have been computationally motivated to
investigate more specific hypotheses, so the link between
the empirical findings and the theories is tenuous.

There is one important caveat to the learning mechan-
isms discussed above. The diverse selectivity observed in
IT cortex suggests that for any given task some neurons
will be more informative than others. One possible mech-
anism underlying object learning might be the optimiz-
ation of the read-out of the most informative IT neurons
[42–44], as has also been proposed in the domains of
orientation and motion learning [45,46], without any
changes of the response properties within IT cortex.

Effects of learning on object representations: Empirical
evidence
Experiments typically compare neural responses to
learned objects with an unlearned baseline, either
obtained before learning [9,47], after learning to a set of
unlearned objects [48,49] or in different, ‘naive’ subjects
[50,51]. Importantly, studies do not typically track changes
in the properties of single neurons across days and weeks
because of technical limitations, and longitudinal studies
have been limited to 1–2 hours at most [52–54]. FMRI
allows changes to be tracked across long periods of time
in individual voxels, but each voxel contains hundreds of
thousands of neurons. So, all inferences are necessarily
based on the comparison of population statistics between
experimental and baseline conditions.

Learning and the single neuron

Learning changes the selectivity or tuning for experienced
objects, with or without an additional role for task con-
straints. In monkeys, some studies have reported a strong
increase in selectivity for trained compared to untrained
objects [38,50] as well as an increased selectivity for
relevant compared to irrelevant stimulus dimensions [8]
(Figure 3a,b). Later studies, which controlled for pre-exist-
ing selectivity biases and spatial attention, reported much
smaller effects, often only a few spikes per second
[47,48,55,56] Figure 3c,d, 4a,b). Using an indirect fMRI
adaptation method to determine average changes in selec-
tivity in a neural population [57–59], human studies have
confirmed a general increase in selectivity for trained
objects in object-selective cortex, but without a difference
in selectivity between relevant and irrelevant dimensions.
Overall, effects have been found consistently by comparing
trained with untrained objects, but more specific effects
such as differences between relevant and irrelevant dimen-
sions seem to be small and harder to detect.

Studies have also reported decreased selectivity for
stimuli that become associated or predictive of each other
[60,61]. The mechanism behind such associative coding
might underlie the creation of tolerance for image trans-
formations such as position or orientation changes [34].
However, the effects have mostly been reported in multi-
modal cortical regions (perirhinal and entorhinal cortex)
rather than unimodal visual areas (area TE in monkeys),
appear weaker in TE [62] and are dependent on the
integrity of perirhinal and entorhinal cortex [63]. Thus,
there is ambiguity as to whether associative coding is an
instance of visual object learning or of semantic memory.

While the temporal association in the classic paired-
associate task is artificial, other studies have used
temporal dynamics during training that resemble natural
vision. For example, a comparison of view invariance
between familiar and unfamiliar objects, where the
familiar objects had been placed in the monkey’s living
environment, suggested stronger invariance for the
familiar objects [64]. However, too few neurons were tested
in the critical comparisons to allow strong conclusions. A
recent within-session longitudinal study induced associ-
ations between objects with temporal dynamics that come
close to those encountered in free viewing, and demon-
strated that tolerance can be modulated in this situation
[52] (Figure 3e,f). Nevertheless, it remains unclear
whether these findings reflect the same mechanisms that
are responsible for the degree of tolerance typically
observed in IT cortex.

As noted earlier, learning might not just modify the
degree of selectivity, but also the optimal stimuli and
tuning dimensions (Figure 2d,e). Some studies have pro-
vided circumstantial evidence for such changes. For
example, Logothetis and colleagues found neurons in
monkey IT cortex with a strong preference for trained
views of complex paperclip objects, but noted that ‘‘no
25



Figure 3. Studies of the effect of a specific training or exposure regime on the responses of neurons in monkey IT cortex. These studies illustrate the role of top-down

feedback about task relevance (a–d) as well as the role of bottom-up spatiotemporal statistics of the visual input (e–f). (a) Subset of the face stimuli used in [8], with an

indication of the relevance of the stimulus dimensions for the behavioral task that monkeys performed during training and recordings. The relevant stimulus dimensions

were the same for all monkeys. (b) Selectivity for differences along relevant and irrelevant face dimensions (subset is shown in panel (a)) as recorded after training,

showing greater selectivity for the relevant than irrelevant dimension. Data were extracted from Figure 4 in [8]. (c) Subset of the shape contours used in [47]. One of two

dimensions was relevant for the behavioral task that monkeys performed during training and during the recordings after training, and task relevance was

counterbalanced across monkeys. (d) Selectivity for differences along relevant and irrelevant shape dimensions (illustrated in panel (c)) as recorded before training

(during passive fixation) and after training. Note that the index of selectivity here is different from that shown in (b). The third pair of bars displays the selectivity after

training minus the selectivity before training. This study illustrates how important it is to know about pre-training selectivity in order to interpret after-training selectivity.

Only after correcting for the pre-training selectivity at the population level do the results in panel (d) confirm the tentative conclusion from panel (b) that behavioral

relevance during training matters for the degree of selectivity in IT cortex, at least when recordings are performed during the execution of the trained task. Several other

studies, some of which used a different task context during recordings, have suggested little difference between relevant and irrelevant stimulus differences [55,57,58],

but an overall increase in selectivity. (e) In another study [52], monkeys were exposed to two conditions during free viewing, one condition in which the screen display

contained the same objects before and after a saccade (normal exposure), and another condition in which an object was changed during the saccade (swap exposure).

The yellow ‘x’ refers to the position of fixations, and the yellow arrow to a saccade. Primates do not notice the transient on the screen caused by the swap because visual

input is suppressed during a saccade. (f) The results from recordings performed after every 100 exposures in the design shown in panel (e). Here we plot the difference in

response to the initially preferred object image (object P) and the initially nonpreferred object image (object N) of each neuron. This response difference is not altered in

the normal exposure condition, but it is reduced over time in the swapped exposure condition. So the two objects that are associated in time become more similar in

terms of the neural responses they evoke.
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selective responses were ever encountered for those views
that the animal systematically failed to recognize’’ [38] (p.
558). Similarly, other studies [50,65] have also highlighted
subpopulations of neurons with particularly high and se-
lective responses for trained objects, but not for novel
objects. However, none of these studies provided sufficient
control conditions to firmly establish the nature of the
underlying effects. Perhaps the best evidence for at least
some minor changes in tuning dimensions comes from a
study in which monkeys were trained to categorize multi-
part baton stimuli based on the combination of parts
present [48]. Comparing the patterns of selectivity for
trained and untrained batons revealed greater coding for
the specific combination of parts, rather than the presence
of individual parts, in trained batons. With single-part
properties as the original dimensions, the coding for part
combinations is an example of the generation of a new
tuning dimension reflecting the interaction between parts
(as illustrated in Figure 2e).

Learning and the population

The simplest characteristic at the population level is the
overall response in experimental and baseline conditions.
Figure 4. Studies of the distribution of learning effects across a neural population with

the multipart baton stimuli from ref. [48]. Monkeys were trained to respond to the bato

both trained (red) and untrained (blue) batons recorded after training. Note that the distr

of training effects rather than the emergence of a few highly selective neurons. (c) Bar plo

an interaction effect in an ANOVA). Almost twice as many instances of whole-object co

inset shows the firing of an example neuron, responding to the four stimuli shown in (

exemplars in one out of three object classes (here this class is shown on top, red arrows

classes were measured in two scan sessions, one before and one after the training pro

relative to the response to the untrained object classes (blue). Responses are expressed

are obtained after training. These histograms are calculated based on all visually activ

display suggests a full distribution of the training effects, similar to the distributions sho

that was obtained in the fMRI study by scanning prior to any training. The preference

session) is plotted as a function of the preference measured before training. For clarity w

two distributions with two elliptic surfaces (trained, red; untrained, blue). The response w

red ellipse relative to the blue ellipse; the same effect is visible in the marginal distribu

lower for trained than untrained objects, (as shown by the fatter ellipse - the ratio of lon

after correction for the within-session reliability of the data). Thus, training changed th

between voxels and was not fully distributed.
Some studies in monkeys have reported an increased
population response [38,50,65–67], other studies a
decreased response [48,49,68], other studies little or no
effect [69]. Human imaging experiments suggest that both
increases and decreases in response magnitude may occur
across distributed areas of cortex [9,10,70,71]. Given the
theoretical considerations above, it is not surprising that
both increases and decreases have been observed - the
results may depend on the initial tuning of the neurons
with respect to the learned stimuli. The disparity across
physiology studies probably also reflects the limited and
non-uniform sampling (a few hundred neurons at best).
Further, if the effects of learning are sparse with limited
clustering, it will be difficult to isolate them.

These considerations bring us to the question of how
sparse training effects are. Plotting the distribution of
effects of interest, such as selectivity for trained and
untrained objects, often reveals a general shift in this
distribution (Figure 4b,e). However, this does not necess-
arily imply all neurons are affected equally by learning.
Without tracking single neurons over time it is very diffi-
cult to establish the nature and distribution of learning
effects. Nevertheless, fMRI has already revealed that
and without knowledge of the neuronal properties before learning. (a) Examples of

ns according to the combination of parts present. (b) Distribution of selectivity for

ibution for trained batons appears shifted to the right suggesting a full distribution

t showing the number of cases of coding for combinations of parts (as assessed by

ding were observed for trained (red) compared with untrained (blue) batons. The

a). (d) In the fMRI study described in [9], each subject was trained to discriminate

denote trained stimulus differences for one subject). Responses to the three object

cedure. (e) Measured distribution of the response to the trained object class (red)

as preferences by subtracting the mean response to untrained objects. These data

e voxels in nine subjects, with a total of more than 100,000 voxels. Note that this

wn in panel b. (f) Here we make use of the knowledge about pre-training responses

to the trained and untrained object classes after training (data from second scan

e do not show all individual voxels (see Figure 6 in in [9]), but a simplification of the

as higher for the trained objects post-training (as shown by the vertical shift in the

tions which were shown in panel e). Further, the between-session correlation was

g versus short axis equals sqrt(1+r)/sqrt(1-r), with r the between-session correlation

e pattern of selectivity across cortex, which indicates the effect of training varied

27



Box 3. Outstanding Questions

� What are the relative roles of bottom-up image statistics and

feedback about task relevance for the size and the nature of

learning-dependent changes in neural object representations? We

mentioned that some, but not all, of the studies that focused on

task-related effects described significant effects. However, most of

the learning effects are seen in studies in which task relevance and

mere exposure go hand in hand: the trained objects are task

relevant as well as frequently encountered [9,38,48–50]. Disen-

tangling these two factors is an important task for future studies.

� What is the relationship between the pre-existing object repre-

sentations and the distribution and size of learning effects? Many

questions relate to this general question: Are the most informative

neurons changed the most? How much of the strong behavioral

effects are due to changes in object representations in contrast to

changes in how object representations are ‘read out’? Some of

these questions can be partially answered with comparisons at

the population level, but the introduction of computationally

motivated studies as well as longitudinal studies that track the

responses of single neurons for days and weeks will undoubtedly

be an important step.

� How do object representations change during development? Are

these changes qualitatively similar to what happens during visual

learning in adults? Are there critical periods and how are these

different for different visual properties?

� All primates with normal development and no brain damage

seem to be capable of recognizing objects with some tolerance for

various image transformations. What are the minimal require-

ments of the visual input and the minimal structural properties of

the system needed to sustain the development of this behavioral

capacity and of the underlying object representations in IT cortex?

� What are the synaptic processes underlying plasticity in IT cortex

(e.g., long-term potentiation and depression)? Can these pro-

cesses provide a rationale to separate short-term, within-session

adaptation effects from longer-term, between-session learning

effects?
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training changes the pattern of selectivity across voxels [9]
(Figure 4f), indicating heterogeneous training effects
across voxels that are not fully distributed. One other fMRI
study has suggested relatively focal effects of learning to
read a particular alphabet (Hebrew) in one part of IT
cortex, the visual word-form area [51]. In addition, a
single-unit study in monkeys has suggested that visual
experience increases the clustering of neurons in peri-
rhinal cortex with similar response properties [72], which
should also change and even enhance the pattern of selec-
tivity as measured with fMRI.

Since the training effects are not fully distributed, then
the question is: which neurons will be affected most? In the
theoretical section we mentioned three possible factors.
Almost all empirical efforts so far have focused on the role
of face selectivity and some fMRI studies have indeed
found strong training effects in face-selective cortex
[39,40,73]. However, most of these studies did not system-
atically compare face-selective cortex with other regions in
IT cortex. Other, more recent studies have shown that
relative moderate learning effects are distributed through-
out IT cortex [9,58,74,75], without any relationship to face
selectivity.

Another candidate factor is how informative a neuron is
for the task at hand. This hypothesis is supported by
studies of the effect of orientation discrimination learning
in retinotopic areas V1-V4 [41]. The preferred orientation
of a neuron turned out to be a strong predictor of the
strength of training effects. Without reference to the pre-
ferred orientation of neurons, these studies of orientation
discrimination would support similar conclusions to the IT
data: small effects distributed across a broad neural popu-
lation (e.g., compare Figure 4b with Figure 3 in ref. [41]).
The problemwith applying this approach to the learning of
more complex objects is that, as described above, visual
objects occupy a multi-dimensional space of which the
dimensions are not very well known. One potential way
out of this problem would be to abandon the notion of an
explicit representation of features or dimensions, and
describe the tuning curves of neurons and experience-
related changes in terms of relatively abstract notions of
the statistical properties of complex visual images [27,28].

Nevertheless, ‘informativeness’ is a promising candi-
date to encompass all existing findings about the neural
basis of visual object learning, and is closely related to a
formal computational model [35,76]. Furthermore, it can
also explain at which level in the visual processing hier-
archy the effects would be most abundant: the level at
which the selectivity of neurons fits best with the task at
hand [50,77]. Finally, it might also explain why, some-
times, neural training effects are small despite large beha-
vioral effects. Indeed, given the diverse tuning properties
observed in IT cortex, learning may merely modify the
read-out of this rich, ‘informative’ neural population
[42,43].

Concluding remarks
Despite the prevalent view that IT cortex is highly plastic,
the current evidence remains limited. Well-controlled stu-
dies find relatively small effects that seem to be widely
distributed. The evidence is strong enough to uphold the
28
view that learning modulates at least some aspects of
object encoding in IT cortex, but more detailed questions
remain unanswered (Box 3). Future studies need to com-
bine computational models with empirical experiments in
order to predict when the available representations are
sufficient for task performance (no further changes necess-
ary), and when not. Furthermore, studies should relate
effects of learning to the specific properties of neurons in
order to pinpoint the potentially small sub-population of IT
neurons that are targeted by learning. This sub-population
might be defined by tuning properties (e.g., preferred
objects or features), type of neurons (e.g., inter-neurons),
or anatomical position relative to the organizational units
in IT cortex (e.g., columns and patches). Answering such
questions would be much easier if learning studies could
track the response properties of single neurons over days
and weeks. This methodology is currently being developed
[78–80].

We have highlighted one specific hypothesis, that the
strength of learning effects might be related to the pre-
learning usefulness of neurons for the learned task and
stimuli. This hypothesis seems quite obvious, given that
learning effects are intimately bounded by the nature of
the pre-learning representation. At the same time,
it unites many benefits: it provides a link to compu-
tational arguments [35], and it offers a clear view on
the expected strength of learning effects given the
already existing representations. However, to test this
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hypothesis convincingly, further technical developments
are necessary to track single-neuron responses over long
periods of time.
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